'LEGIBILITY NOTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination poOSsi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it Is
being made available to expedite
the availability of information on the
research discussed herein.

1



LA-UR -90-2564 —

Con A emas At o Laborgtory s opergled by the Uraversdy of Calforma tor the United Slates Depdrtment ul Energy under contract W 7405 ENG 36

LA-UR--90-2564
DE90 015058

NTLE PERFORMANCE LEVALUATION OF THE 1BM R1SC SYSTEM/6000: COMPARLSON
OF AN OPTIMIZED SCALAR PROCESSOR WITH TWO VECTOR PROCESSORS

AUTHORS) Margarcet L. Simmons and Harvey J. Wasscerman r

Aegeived by gy

.'.\
MG 06 199
SUBMITTED TO  Supercomput ing "90, New York NY, November 12, 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United Staten
Giovernment  Nerther the Umited States Gavernment aor any agency thereal, nor any ol their
cmpluyees, makes any watranty, cipress or implied, ur axsumes any legal liability or responsi-
hility tor the accuricy, compleseness, or esetulness of any infarmation, apparatus, product, or
process diwclosed, o1 represents that s use would not infringe privately owned nghts Refer
ence heremn 1o any specific commeral prmduct, process, or service by trade name, trademark,
manulactarer, or otherwise dues not necessartly constitute of imply s epdursement, recom-
mendution, of Tavoring by the Unitcd States Guvernment or any agency theresl o he views
and opimons of authors expressal herein do not necessanily state or rellect thine of the
United States Grovernment or any agency thereol

. ) Py [T TR TN L LR T L TR TUE) I T AL S S T T PP S T PRV TL I TPV P TIXCY N PN EIYT PR TACT T FTV TS A L
U LTI O PR T s Vo M s Nt e Lo LY P mand g puanees,
P e \ L L L L L T T L L O T R S ST TLL BRI CTH PR PITI [ IO WL TI CA T LTI P § TP TL LA L B TTET

S /N Ule aresmsnE Los Alamos National Laborator
OS AARMO LosAlamos NationsiLabortory

OIS THIBU LON Ut D ot -GLnARNT & INUMITE

{

QMHDItﬁ

-


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Performance Evaluation of the IBM RISC System/6000: Comparison
of an Optimized Scalar Processor with Two Vector Processors

Margaret L. Simmons and Harvey J. Wasserman

Computer Research Group
Computing and Communications Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

RISC System/6000 computers are work-
stations with a reduced instruction set pro-
cessor recently developed by IBM. This re-
port details the performance of the 6000-
series computers as measured using a set of
portable, standard-Fortran, ccmputation-
ally-intensive benchmark codes that repre-
sent the scientific workload at the Los
Alamos National Laboratory. On all but
three of our benchmark codes, the 40-ns
RISC System: was able to perform as well as
a single Convex C-240 processor, a vector
processor that aiso has a 40-ns clock cycle,
and on these same codes, it pcrformed as
well as the FPS-500, a vector processor with
a 30-ns clock cycle.

1. Introduction

In this paper we report the results of a
study of IBM RISC System/6000 central pro-
cessing unit (CPU) performance as

measured by a set of Fortran benchmarks

representing the scientific workload at Los
Alamos National Laboratory (LANL). 't'he
RISC System/6000 is a reduced instruction
set computer (RISC) whose architecture may
be referred to as “superscalar’ (or opti-
mized scalar), because the hardware can
carry out more than one instruction per
clock period.! Two RISC System/6000
computers were recently loaned to the
Advanced Computing Laboratory (ACL) at
LANL as part of a beta-testing agreement.
Our benchmark codes have been used to
test an extensive list of high-performance
computers.4-5 In particular, they have been
very useful in measuring the performance
of a wide variety of vector processors. In
this paper we will comparc the performance
of the new IBM RISC System with two of
these vector machines, especially a single
processor of the Convex (C-240 system. We
concentrate on this machine simply because
it has the same CPU clock cycle as one of
the IBM RISC Systems.  As such, the data
allow direct comparison of the efficiency of

a vector processor relative to that of an opti



mized scalar processor, the only such
The
other vector processor we include is the
Floating Point Systems FPS-500 FPX.

comparison of which we are aware.

3. Results

3.1 Performance on Primitive Vector
Operations

Two of our benchmarks, VECOPS and
VECSKIP,

performance of vector operations as a

are designed to measure
function of vector length for several dif-
ferent memory access patterns. Although
the RISC Systems do not have vector
capability, the memory is organized as a
hierarchy composed of registers, a
(relatively) large, fast data cache, and a
larger, somewhat slower main memory.
On an architecture such as this these codes
can measure the effect on performance of
in-cache residency of data vs. out-of-cache
requests. In Table 1, we report rates for
"vector operations” as a function of "vector
length,” in order to maintain consistency
with the corresponding data from a vector
computer, given in Table 2. However,
because the RISC Systems are not vector
computers, these terms refer to an iterative
operation on arrays, still denoted as "V1,”
“V2," etc., and a particular loop length of
In both VECOPS and VECSKIP,

there is an inner loop that performs the

interest,

indicated operation, while an outer loop
simply repeats this inner loop enough times
to get measurable results.

A plot of rate vs. vector length for the
operation Vi = V2 + V3 on the 40-ns 1BM

RIGC System is shown in Figure 1. The plot

shows a dependence on vector length that is
characteristic of a vector computer; this
occurs on the RISC System because of the
the
operands (and storing the results) through

latency associated with loading
the cache. The time, T, to carry out a vector
operation of length n, has been described by
Hockney8 in terms of an asymptotic rate,
r., and a vector half-length, ny,o (eq. 1).
Others59.10 have described the same

functionality in terms of a linear model
with a startup time, Ty, and an element

time, T, (eq. 2).
T:(n+n1/2)/rm (1)
T=Tgy+nT, (2)

These two descriptions are algebraically
equivalent, as noted by Lubeck.® In Figure
1, the data are shown by large dots (¢) while
the smooth curve that has been drawn

represents an approximate fit to the data
using the Hockney formulation with r_ =

8.2, and n)/p = 2.45. A fit using the straight

line methoa to these data will be discussed
in more detail below,

In the operation that was carried out t{¢
produce Figure 1, all of the required data,
the two operands V2 and V3, and the result,
V1, fit within the 64-kbyte cache on the 40-ns
RISC

results are observed when the smount of

System. Significantly different
data required for the uperation exceeds the
capacity of the cache, or when the ar-
rangement of data in main memory is such
that the memory-cache mapping is non-
optimal.  An example of this is shown in
Figure 2, which depicts a plot of rate vs.
vector lengrth for the operation V1 2 V2 * VY



Rate (MFLOPS)
L] W F 3] [«)] ~ w o

rate (MFLOPS)

+ Va * V5

P

%

§

J[/

—— Y - 14 L

20 40 60 80 100 120

Vector Length

Figure 1. Plot of rate in millions of
floating-point operations per second
(MFLOPS), vs. vector length for the
“vector” operation V1 = V2 + V3 on the 40-
ns IBM RISC System/6000. Experimental
data are represented by bullets(¢), while

the smooth curve represents a calculation
using the Hockney parameters r_ = 8.2

MFLOPS and n, = 2.45.

12

—r b
0w O -

b

O—0

b 0T O N @

——— v —

0 250 500 7£9100012501500

vector length

Figure 2. Plot of rate (MFLOPS) vs. vector
length for V1 = V2 * V3 + V4* V5 on the 50-
ns IBM RISC Syatem/6000,

on the 50-ns IBM RISC

System/6000.

This machine, contains a 32-kbyte
cache. The overall shape of the curve in
Figure 2 has been qualitatively described
previously using similar data coilected on a
single processor of the Alliant FX system.l!
The initial part of the curve shows the same
functionality as in Figure 1. Cache misses
become significant at about vector length
225, where a steep drop in rate is observed,
and at a vector length of about 1100, the rate
becomes constant. At this point the observed
rate is largely a function of the rate at
which the cache line (64 bytes) can be
refilled from main memory. The observed
rate of about 5 MFLOPS corresponds to a
result every 15 clock periods, which is the
number of clock p_riods recuired to reload a
The sharp

drop in rate shortly after vector length £00

cache line following a miss.

may be due to the total capacity of the cache
being exceeded, since the maximum vector
length that can be accomodated for five
vectors is 819 (double-precision) words.
While a detailed explanation of the
cache behavior is beyond the scope of this
paper, we note that performance can be a
sensitive function of the relative starting
addresses (in memory) of the arrays
invelved and the organization of the cache,
as well as the loop lengths of interest and
the loop strides. The 50-ns RISC System has
It is
possible to define “pathological” cases

512 cache lines a..d 128 cache sets.

where each of the five arrays are mapped
into the same cache line and cache set. For
the five-vector system, this means that every
reference to the fifth vector will require
relonding a cache line. In such a case,

even with unit stride, we have observed



rates of less than one MFLOP per second at
all vector lengths.

Table 1 lists the megaflop rates obtained
for a variety of "vector” operations on the
40-ns IBM RISC System. For comparison,
the corresponding data from a single
processor of a Convex C-240 min-
isupercomputer are given in Table 2. We
can make the following qualitative
comparisons based on the data from the two
First, the IBM RISC System
clearly has an advantage at short vector

machines.

lengths. This advantage is quite lopsided at
vector lengths as long as 25 or so (not shown
in the Tables). At longer, asymptotic vector
lengths, differences between the two
machines mostly vanish, with two
exceptions. The exceptions, which are dis-
cussed below. are for the operations V=V +
SandV=S*V+S*V.

Table 3 lists the results of least-squares
fits to the 40-ns IBM RISC System data
using equation (2). The value of the start-up
time, T, given in Table 3 for A(l) = B(I) +
S, is much smaller than the vnlue of 1922
nanoseconds (ns) we found for the Convex.3
This accounts fcr the substantial difTference
in rates between the two machines at very
small vector lengths.12

To understand the differences in rates
at larger vector lengths we must look at
what the model predict: for the rate at which
each machine can produce a result for each
operation, shown in the third column of
Table 3. It is at this point we begin to see
evidence of the instruction-level paral-
lelism provided by the IBM RISC System.

Cernsider, for example, the operation

A) = Bd) + C(l). This operation requires

Table 1. Rate (MFLOPS) for Selected Vector
Operations as a Function of Vector Length on the
40-ns IBM RISC System/6000

Vector Length

Operation 10 50 100 500 1C00

VaVa+S§ 80 95 97 989 99
VuV+S(I=1N2) 45 79 B89 95 938

V=V+S(I=1N23) 45 79 89 08 08
VaVs+V 63 80 80 82 82
VeV+S*V 127 160 160 164 164
VaV*V+V 101 121 121 123 123
VeS*V+S*V 173 184 184 185 178
VaV*V+V*V 124 146 146 148 148
VDeV(D+V*V 72 82 81 82 82

Table 2. Rate (MFLOPS) for Selected Vector
Operations as a Function of Vector Length on a
Singl? Processor of the Convex C-240

Vector LenEth

Operation 10 50 100 500 1000

VaVs+S 39 92 105 16 117
VaV4+8d=1,N2) 24 87 108 111 111
VaV4+Sd=1N2n 23 87 109 111 111

V=V+V 33 68 15 79 19
VeV4+S*V 62 134 148 158 158
V=V*V.+V 54 107 114 118 118

VeS*V4+S*V 75 199 20 233 235
VeVe*rV4VeEY 65 132 139 144 145
VID=V(D+V*V 31 63 68 72 12

the sequence of instructions LOAD B, LOAD
C, ADD, and STORE A, which consumes
four clock periods for each result.
However, the data indicate a time-per-
element of 120 ns, which corresponds to
three clock periods on the 40-ns RISC
The RISC System accomplishes
this by executing a (pre-)load for one of the
operands at the same time that it performs

System

the floating-point operation.

Table 3 includes an explanation of how
the RISC System carries out several rep-
resentative vector operations, showing the
steps that are repeated in ench loop after the
pipelines have been londed.  In each case,

the sequence of instructions involves a pre-




fetch being performed in parallel with a
floating-point operation. By so doing, the
RISC System is able to eliminate one clock
period per iteration from the sequence that
would otherwise be required in a single-port
vector computer such as the Convex. This
also allows the RISC System to achieve the
same flop rate per cycle as an IBM 3090/VF
processor. 13

It is interesting to compare the effi-
ciency of the RISC System/6000 with that of
a Convex processor for the operation A(I) =
S1* B(I) + S2 * C(I). On the Convex this is
a "three-chime" operation, involving the
sequence LOAD C - MULTIPLY 82
(chained), LOAD B - MULTIPLY S1 - ADD
(chained), followed by STORE A. Thus the
Convex can produce a result every three
clock cycles, suggesting a peak rate of 25
MFLOPS; about 24 MFLOPS was observed.
The RISC System, on the other hand, re-
quires four clocks per result, suggesting a
peak rate of 18.75 MFLOPS, while about 17
MFLOPS are olLserved. This is the only
operation in the group we have studied for
which the rate on A Convex processor can
exceed the rate on the RISC System.
Apparently, the RISC Gystem compiler is not
extracting all the available parallelism.
The operation seems to involve the sequence
LOAD B;, MULTIPLY 82, C; - Load C; 1
(simulitaneously), MULTIPLY / ADD,
STORE A. In arincipal, the multiply should
occur simultaneously with the LOAD B;,

and the multiply / add should occur
simultaneous!y with the LOAD C;,,.

At this time we cannot explain the re-
sults for {he RISC System on the operation V
= V + 8§, which runs at the aggregate rate of

one result every 2.5 cyecles (10 MFLOPS
asymptotic rate). An asymptotic rate of
about 12.5 MFLOPS, corresponding to one
result every 2 clocks, is expected, and an
examination of the generated code shows
that the instruction sequence given in Table
3 is nominally correct. Further explanation
of the V=V + S (and V = V * S) operation is
required.

3.2 Comparison of Performance on Larger
Benchmarks

In Table 7 we show benchmark execu-
tion times for the 40-ns RISC System along
with those from a cingle processor of thke
C-240
description of the C-240 has appeared

Convex system.3 A complete
elsewhere.14 Here, we merely note that it tao
is a demand-paged dynamic-memory
system, and it has a 4-kbyte scalar data
cache, independently pipelined functional
units, and eight 128-element 64-bit vector
registers. Our benchmark of the C-240 was
carried out in July, 1989,

A description of the benchmark codes
may be found in the appendix to Reference
2. All codes use 64-bit precision. Timing
on the IBM RISC System was carried out by
reading the 64-bit real-time clock using an
IBM-guppiied routine.

We consider first several codes in our
benchmark set that do not vecturize. These
are GAMTEB, for which we estimate the
level of vectorization is about 20%, and
ESN, SCALGAM, and PHOTON, which do
not vectorize at all. In a previous report? we
compared the performance of the 40-ns IBM
RISC System/6000 with two other RISC-based



[ Table 3. St.artupJTimes,T,, and Execution Times, g Derived from the Least-Squares Fit, and
Execution Sequences for Various Vector Operationa on the 40-ns TBM RISC System/6000
Operation ?.,—nF[Te_ns Execution Sequence After Startup
(clocks)*

AD=B(+S £53 100(2.5)| 1) Add B;, S;Loac B ;,,
2) Store A

AD=B(Dh+S{I=1,N,2) 123 100(2.5) | Same as above

A = B(D + &) 315 125(3) | 1) load G
2) Add B;, C; ; Load B, ,
3) Store A,

All) = B(D) + S * C(D) 5 120(3) |V LoadC;
2) Multiply /Add B, S,,C, : Load B, ,
3) Store A,

A = B(h) + C( * DX 30 160(4) |1 Load D,
2) Load B,
3) Multiply /Add B, C,, >, ; Load C,
4) Store A,

A(l) = S1* B(l) + 82 * C() 240 160(4) |1 Load B
2) Multiply 82, C;;Lead C,
3) Multiply / Add S1, B,, resuit from 2)
3) Store A;

Ah=Bh*ch+DDH*ED | 30 200(5) |1) LondD,
2) Load C,
3) Multiply E, D,,; Load B ,,
4) Multiply / Add B,, C,, res. from 3); Lond E, ,,
5) Store A,

* The time-per-element is given first in nanoseconds, and Lthen as the number of CPU cluck periods

ta which this value correaponds.

computers, the SUN-4/390 and the Digital
Equipment Corporation DECstation-3100.
The results of comparing the RISC System
with the Convex are almost directly opposite
those for the SUN and DECstation. Relative
to the SUN ard the DECstation, the IHM
RISC System performed best on codes that

6

could vectorize. However, the Convex has
the advantage on these codes, and the
relative performance of the RISC System is
best on the scalar codes in the benchmark
set. The RISC System runs SCALGAM and
PHOTON about 1.5 times faster than does n

single processor of the Convex (-240,



[ Table 4. Comparison of Benchmark Execution
Times! for the 40-ns IBM RISC System and a
Single Proceasor of the Convex C-240
Convex 40-ns IBM Ratio:
Code G240 RISC System Tc_940/
Time Time TIBM
HYDRO 746 2008 04
VGAM 44 70 06
MATRIX 140.0 1470 10
WAVE 4102 3643 11
1LSS300 5402 4973 11
LSS 235 202 12
FFT 14.7 115 13
GAMTEB 10.7 81 13
SCALGAM 2421 1634 15
PHOTON 3382 213 15
INTMC 31.1 186 1.7
ESN 419 180 23
1Times are in seconds on a dedicated machine.

although a critical fix to the IBM Fortran
DINT intrinsic function, a major time
consumer in these two codes, was required.2

On the vectorized codes in the bench-
mark set, performance of the two machines
is mixed. On MATRIX, LSS, LSS300,
WAVE, and FFT, the two machines are
basically equivalent. However, a single
Convex C-240 processor runs HYDRO and
VGAM much faster than the 40-ns RISC
System. The vectorizable code that the RISC
System runs fastest relative to the Convex is
FFT, which involves short vector lengths
that expose the relatively larger vector
startup times on the Convex. In spite of
comparable performance for MATRIX and

LSS on the C-240 and RISC System, a single
processor of the Convex C-240 runs HYDRO
1.6 times faster than does the 40-ns 1BM
RISC System. HYDRO involves vectors that
are accessed with a stride of 100 and
therefore the RISC System cachz cannot
support the required memory bandwidth.
Although the Convex processor also has a
cache, it is used only for scalar data. A
more detailed discussion of wae effect of
bringing "vectors” of data through a cache
on HYDRO may be found in the IBM-
3090/VF benchmark, where similar
degradations in rate were observed.15

The Convex runs the VGAM17 henchi-
mark about 1.7 times faster than the 40-ns
RISC System. This code involves many
gather operations at large vector lengths,
which strongly suggests that the RISC
System may again be suffering large
numbers of cache misses.

Finally, we report preliminary results
for PUEBLO3D, a new code that is to bacome
part of our standard benchmark sui‘e.1©
PUEBLO3D is a Lagrangian hydrodynam-
1cs code used to model point explosions in
space. The code is highly vectorizable,
although Cray compiler directives are cur-
rently included. Results are shown in
Table 5, in which several levels of optimiza-
tion for the Convex C-240 are included.

Table 5. Comparison of PUEBLO3D Execuuion Times! for the Convex C-240
nnd the 40-ns RISC System

40-ns RISC System Convex C-240 Nuten
Time Time
9799 (231.4) 190.8 Single-processor Convex; no compiler directives
8.8 Single-processor Convex with compiler directives
500 Four-prucessor Convex

ITimes are in seconds on a dedicnted mnchine.




This is the only instance in this paper in
which multiprocessor results are shown.
PUEBLO3D amplifies the problems as-
sociated with use of the RISC System cache
on vector codes. The code is set up to run a
grid of size 32 X 32 X 32 and arrays are
initially dimensioned to this size. Thus,
the 32K elements of this grid all map to the
same cache set. This is why the
performance for the 40-ns RISC System (979
seconds) is about 20% of the single-processor
Convex performance. Because of the way
the code is set up, it is impossible to change
the array dimensions without changing the
size of the problem that is run. So we ran a
slightly larger case, 33 X 33 X 33, on the
IBM. The execution time for this larger,
"re-mapped” problem is 231 seconds, ~25%
of the time for the smaller problem, and
closer to the performance of the (single-
processor) Convex without compiler
directives. The Convex C-240 also achieves
a speedup due to automatic concurrent-vector
computation on PUEBLO3D, with the
execution time decreasing to 50 seconds.
Table 6 presents a comparison of the 40-
ns RISC System with another vector
computer, the Floating Point Systems FPS-
500 FPX. This machine has a 30-ns clock
cycle. The FPS-500 processor consists of a
RISC scalar processor rated at 33 MIPS and
a vector processor containing eight 1024.
element (64-bit) vector registers. We
benchmarked a single-processor FPS-500
containing 128 Mbytes of memory. We used
a beta-release of the FPS Version 3 Fortran
compiler, which, with use of a compile-line
option, inlined several intrinsic functions,

notably DINT in SCALGAM and PHOTON.
The FPS-500's performance exceeds that

Table 6. Comparison of Benchmark Execution
Times! for the FP3-500 and the 40-ns RISC
. System

FPS-500 40-ns IBM Ratio:

Code Time Time Tpps.500/
Tipm

PUEBLO- 97.0 979.9 0.1
D (231.4) 0.49)
HYDRO 72 2008 04
VGAM 41 70 06
LSS300 4855 4973 10
WAVE 3883 3643 11
MATRIX 1700 1470 12
SCALGAM 242 163.4 14
PHOTON 3103 213 14
LSS 2.7 202 15
GAMTEB i43 8.1 18
INTMC 188 186 21
FFT 30.1 115 26
ESN 66.8 180 21
1Times are in seconds on a dedicated
machine.

of the 40-ns RISC System on HYDRO and
VGAM, again because the non-contiguous
access to memory in these codes causes too
many cache misses on the RISC System,
and on PUEBLO3D, due to the cache
alignment problems discucsed above. The
relative ordering of the codes in Table 6 is
roughly the same as it was in Table 4,
except for the effect of the FPS-500's longer
vector registers on LSS, LSS300, and FFT.

4. Conclusions

In a previous paper we compared the per-
formance of the IBM RISC System/6000 .na-
chines with other RISC-based computers.2
We reported that the biggest advantage the
"superscalar” IBM architectures had the
over other RISC-based systems was on the
vectorizable floating-point codes in our
benchmark set. This was particularly true
for LSS and MATRIX, because these codes
are dominated by the SAXPY operation, and
thus could take advantage of the RISC



System's pipelined multiply-add instrue-
tion.

It is not surprising that the IBM RISC
System held this advantage over the more
conventional RISC systems on vectorized
codes. In general, vectorization represents
a highly-ordered form of computation that is
amenable to any highly pipelined architec-
ture, of which the RISC System/6000 is one.
An important question, though, is whether a
highly pipelined (super)scalar machine can
achieve performance comparable to that of a
vector processor. This study has provided
some answers to this question.

We compared the IBM RISC System/6000,
a machine with no vector capabilities, with
two representative mid-range vecter pro-
cessors. On all but three of our benchmark
codes, the 40-ns RISC System was ablz to
perform as well as a vector processor
having the same CPU clock cycle, and on
these same codes, it performed as well as a
vector computer having a faster CPU cycle.
On codes that are largely scalar in nature,
the RISC System performed better than both
of the vector machines, possibl’ because of
the RISC System's novel branch pre-
diction/execution capabilities as well as its
decreased pipeline startup time. The vector
machines gained maore of an advantage
over the IBM workstations as vector lengths
increased, and only on the codes that
accessed memory with large strides did the
vector processors perform significantly
better than the IBM machine. In these
cases, the cache on the RISC System
prevented the hardware from maintaining
a fully loaded floating-point pipeline. The
cache is the only "weak lin%:" that we have
been able to discover in the RISC

System/6000 architecture. Many of the codes
developed at Los Alamos use constant non-
unit strides through memory because the
codes were developed for the Cray Research
line of computers, on which the penalty for
non-unit strides is less significant than on
other architectures.®

Finally, we remind the reader that the
oar benchmarks are intended to represent
the scientific computing workload at LANL.
Benchmarking is a highly workload-de-
pendent endeavor, ans. thus one must use
caution when comnaring our results with
those obtained using other workloads.

Acknowledgements

We wish to thank many people at [BM,
John MacDonald, Cecil Severs, Deanna
Collins, Minerva Carrera, Steve Vaughan,
and particularly Tung Nguyen, for show-
ing a great deal of enthusiasm during our
joint-study project. We also thank Ann
Hayes, Jerry DeLapp, and Andy White of
the Los Alamos Advanced Computing Labo-
ratory for making generous availability of
ACL resources. We are indebted to Ronald
Gray of Convex Computer Corporation fcr a
great deal of help in running our bench-
mark codes on the C-240, to Chuck Niggley
of FPS Computing for help in running our
benchmarks on the FPS-500, and to Olaf
Lubeck and James Moore of LANL for
helpful discussions concerning cache

behavior.



References and Notes

(11 IBM RISC System/6000 Technology,
SA23-2619, International Business Ma-
chines Corporation,Austin, TX.

{20 M. L. Simmons and H. J. Wasserman,
"Los Alamos Ezneriences with the IBM
RISC System/6000 Workstations," Los
Alamos National Laboratory report LA-
11831-MS (1990).

{3] R. J. Koskela, M. L. Simmons, and H. J.
Wesserman, "Performance Characteri-
zation of the Convex C-240 Computer Sys-
tem,” Los Alamos National Lahoratory
report LA-11769-MS (February, 1999).

(4] H. J. Wasserman, "Los Alamos Na-
tiona! Laboratory Computer Bench-
marking 1988," Los Alamos National

Laboratory report LA-11465-MS
(December, 1988), and references
therein,

(5] O. M. Lubeck, "Supercomputer Perfor-
mance: The Theory, Practice, and Re-
sults,” Lus Alamos National Laboratory
report LA-11204-MS (1988).

{G] International Business Machines Corpo-
ration, "Using the AIX Version 2.2.1 Op-
erating System,” IBM publication
#S5C23-2007-0, April, 1988. An updated
version of this manual, designed espe-
cially for use with AIX Version 3.1 on
the RISC Systems, will be available
soon.

(7] International Business Mackines Corpo-
ration, "IBM AIX RISCrxxx XL Fortran
V 1.1 User's Guide,” IBM publication
#SC09-1257-00, October, 1989.

[8] R. W. Hockney and C. R. Jesshope, Par-
allel Computers (Adam Hilger, Bristol,
1981).

(9] O. Lubeck, J. Moore, and R. Mende~, "A
Benchmark Comparison of Three Su-
percomputers: Fujitsu VP-200, Hitachi
S810/20, and CRAY X-MP/2," IEEE
Computer, 18 11985) 10-29.

{10] 1. Y. Bucher and M. L. Simmons, "A

Close Look at Vector Performance of

Rcgister-to-Register Vector Computers

10

and a New Model.” Los Alamos Na-
tional Laboratory document LA-UR-86-
3886 (May, 1987).

[1i] W. Abu-Sufah and A. D. Maloney,
"Vector Processing on the Alliant FX/8
Multiprocessor,” in Proc. 1986 Internat.
Conf. Parallel Processing, IEEE Com-
puter Society, 1986, pp. 559-566.

(12] The value of T, for the Convex was ob-

tained using a linear model in which
the "stripmine” time, the time to reload
the vector registers after each 128 have
been processed, was included.

[13] P. Carnevali and M. Kindelan, "A
Simplified Model to Predict the Perfor-
mance of Fortran Vector Loops on the
IBM 3090/VF," Comput. 13 (1990) 35-46.

(14] M. Chastain, G. Gostin, J. Mankovich,
and 8. Wallach, "The Convex C240 Ar-
chitecture,” in Froc. Supercomputing
‘88, IEEE Computer Society, 1988, pp. 321-
329.

[15] R. G. Brickner, H. J. Wasserman, A.

H. Hayes, and J. W. Moore,

"Benchmarking the IBM 3090 with Vec-

tor Facility,” Los Alamos National Lab-

oratory document LA-UR-86-3300

(September, 1986).

(16] PUEBLO3D, written by Eugene Sym-

balisty of LANL, is a “stripped-down”

version of the CAVEAT code. See F. L.

Addession, et al., "CAVEAT: A Computer

Code for Fluid Dynamics Problems with

Large Distortion ard Internal Slip," Los

Alamos National Laboratory report LA-

10613-MS (1986).

117] P. T. Burns, M. Christon, R.
Schweitzer, O. M. Lubeck, H. J.
Wasserman, M. L. Simmons, and D. V.
Pryor, "Vectorization of Monte Carlo
Particle Transport: An Architectural
Study Using the LANL Benchmark
'‘GAMTEB'," Proc. Supercomputing '89,
IEEE Computer Society, 1989, pp 10-20.



